

Photocurable resin for 3D Printing

Tsuneo HAGIWARA, DSc. Education and Research Center for Growth Strategy, Yokohama National University, Yokohama, Kanagawa 240-8501, Japan E-mail: ts.hagiwara@gmail.com

© Tsuneo HAGIWARA

September 28, 2021@7YPSCSC

YNU

Agenda

- What is AM (3D Printing)
- Usage of 3D Printing and its market
- Photocurable resin for 3D Printing
 - Vat Photopolymerization (Stereolithography)
 - Current special application
 - Material Jetting technology
- Nanoparticle for 3D Printing
 - Ceramic 3D Printing
- Summary

YNU Additive Manufacturing ; AM = 3D Printing

- Fabricate physical objects directly from 3D CAD data
- Materials, such as "Photo curable resin", "Plastic powder", "Plastic wire", "Plaster", "Paper" or "Metal powder".
- Accumulate layer by layer
- By using laser beam, electron beam, heat, Inkjet, etc.

YNU Typical Application by 3D Printing

- Verification Model, Functional Model, Assembly Model
- Rapid Prototyping
- Molding Die Design
- Small Lot Production (Aircraft parts etc.)

YNU

Classification of 3D Printing Technology

Additive technology	Common name	Material	Method, Equipment	Characteristics	Typical example
Vat Photo polymerization (VPP)	Stereolithography SLA	Photocurable resin	LASER, LED	Precise, Accurate Big size	Prototyping Jewelry
Powder Bed Fusion (PBF)	SLS, SLM, EBM HSS	PA12, PP powder Metal powder	LASER, EB InkJet/Heating	Real parts (PA12) Metal parts	Aircraft parts, Metal parts, Injection Mold
Material Extrusion (MEX)	FDM, FFF	ABS, PC	Heating	Easy to use PLA ~Super Eng. Plastics	Prototype, Parts, Hobby
Binder Jetting (BJT)	InkJet, Z-Printer	Plaster powder Aqueous binder	InkJet	High speed Full color	Figure, 3D image
Material Jetting (MJT)	PolyJet MJM, ProJet	Photocurable resin Natural wax	InkJet	Various expression	Medical, Figure
Sheet Lamination (SHL)	LOM	Paper, Plastic, Metal sheet	LASER, Cutter knife	Easy to use Full color	3D map
Directed Energy Deposition (DED)	LENS, DED	Metal powder	LASER	High speed	Metal parts
Hybrid		Metal powder Resin wire, pellet	LASER + CNC Heating + CNC	Accurate Product level	Metal parts Plastic parts

ASTM: 7 types + hybrid \rightarrow 8 types

© Tsuneo HAGIWARA

YNU

Industrial 3D Printer (>\$5,000)

Ó Tsuneo HAGIWARA

5

YNU Desktop (Personal) 3D Printer (<\$5,000)

Mini W+/XYZ

\$ 300

BONSAI mini/ \$1,000

Ultimaker

Ultimaker2+

\$3,000~

Form2+/SLA \$3,000~

7

Car industry

Aircraft, 15.9% Aerospace

16.0%

14.4%

Academic

Desktop/Personal: <5,000\$: 753,000 http://www.wohlersassociates.com

Ó Tsuneo HAGIWARA

\$1.500

Makerbot/Replicater

YNU

Usage of 3D Printing

Military

Power/ Energy

Home appliance

- Design verification and prototyping for production development
- High value-added industrial final products Construction Others
- Aircraft, aerospace industry
- Jewelry
- Medical and Dentistry
- Human body varies greatly from person to person, 3D printing is suitable for individual dimensions.
- Consumer goods
- Custom design, Art, Personal expression, Hobby

6.0%3.4%

10.9% 6.8%

13.9%

12.7%

Wohlers Report 2021

YNU Usage of Each 3D Printing Technology

Usage	Purpose	Material	Process	Typical Manufacturer
		Plaster	BJT	3DSystems
	Verification model	Photocurable-resin	VPP, MJT	3DSystems, CMET, D-MEC, DWS, Stratasys, 3DSystems, KEYENCE
		Thermoplastics (Powder, wire)	PBF, HSS, MEX	EOS, 3DSystems, HP, Stratasys
Prototype		Sheet (paper, PVC sheet)	SHL	MCor
		Photocurable-resin	VPP	3DSystems, CMET, D-MEC(JSR)
Functional test Fitting	Functional test Fitting	Thermoplastics (Powder, wire)	PBF, MEX	EOS, 3DSystems, Aspect, Stratasys
		Metal powder	PBF	EOS, 3DSystems, SLM, etc
	Mold, casting pattern	Photocurable-resin	VPP	3DSystems, CMET, D-MEC
Tooling (Mold)	ng d) Metal mold	Metal powder	PBF	Matsuera, SODICK
()	Sand casting mold	Natural Sand	BJT	ExOne, voxeljet, CMET
	Plastic product	Thermoplastics (Powder, wire)	PBF, MEX, HSS	EOS, Stratasys, HP
	Metal product	Metal powder	PBF, DED, Hybrid	EOS, 3DSystems, Matsuera, GE Additive
Final	Dental application	Photocurable-resin, Metal powder	VPP, PBF	DWS, EnvisionTEC, RapidShape, EOS
products	Metal mold	Metal powder	PBF	Matsuera, SODICK, DMG/Mori
BiO-3DPr	BiO-3DPrint	Bio ink, iPS cell	MEX	CELLINK, Cifuse, EnvisionTec
	Implant	Metal powder, PEEK, PEKK	PBF	ARCAM, EOS
Others	Fixture	Thermoplastics (Powder, wire)	PBF, MEX	EOS, Stratasys, Ricoh
Others	Education	Thermoplastics, Plaster	MEX, BJT	RepRap Machine, 3DSystems

© Tsuneo HAGIWARA

W/W Market of 3D Printing (Wohlers Report 2021)

© Tsuneo HAGIWARA

Materials for 3D Printing

Method	Manufacturer		Materials	Application/Usage
Wiethou		Category	Classification	Application/Osage
VPP/LASER	3D Systems	Photo-Resin	EPOXY / Acrylate Hybrid	RP
	CMET	Photo-Resin	EPOXY / Acrylate Hybrid	RP
	DWS	Photo-Resin	(Urethane) Acrylates,	Jewelry, Dental
	Formlabs	Photo-Resin	(Urethane) Acrylates	Hobby
VPP/DLP-lamp	Envisiontec	Photo-Resin	(Urethane) Acrylates	Jewelry, Dental
	ASIGA	Photo-Resin	(Urethane) Acrylates	Jewelry, Dental
Material Jetting	3D Systems	Photo-Resin	(Urethane) Acrylates/Wax	Jewelry, Dental
	Objet (Stratasys)	Photo-Resin	(Urethane) Acrylates	Model, Dental
	3D Systems (Z)	Plaster	Plaster/Water	Design
	Solidscape	Wax	Wax+Polyester binder	Jewelry
PBF/LASER	EOS	PA, Metal P	PA12, SUS, Ti, Al, Co-Cr	RP. Prod, Medical
	3D Systems	PA, Metal P	PA12, SUS, Ti, Al, , Co-Cr	RP. Prod, Medical
	ASPECT	PA, PP	PA12, PP	RP
PBF/EBM	ARCAM	Metal P	Ti (alloy)	Medical(Implant)
Materials Extrusion	Stratasys	Thermoplastics	ABS, PC, PEI, PPSF etc	RP, Model
	3D Systems	Thermoplastics	ABS, PLA	Model, Hobby
	RepRap etc.	Thermoplastics	PLA	Hobby

© Tsuneo HAGIWARA

YNU

11

3D Printing using Photocurable Resin

1. Vat Photo-polymerization (VPP)

YNU 3D Printing using Photocurable Resin

	Large size LASER	Small size LASER	DLP	InkJet
	Free surface	Regulated surface	Regulated surface	Photocurable resin
	(VPP)	(VPP)	(VPP)	(MJT)
Light source	UVLASER	LD LASER	LED, UV lamp	
(nm)	355nm	405nm	Vis. lamp、 405LED	UV lamp
Process	Contact with air	Transparent window Not contact with air	Transparent window Not contact with air	InkJet Contact with air
T · 1	3D Systems	DWG	EnvisionTEC	Stratasys
Typical	CMET	DWS Familalia	ASIGA	KEYENCE
Manufacture	D-MEC	Formlabs	Nexa3D	3D Systems
Scheme		Working table Resin tank	ID-object	Anting Head Xank Yank Factors # Factors # Guern Factors And Tay Xank
	D.4			13

C Tsuneo HAGIWARA

YNU

Example of VPP Machine

© Tsuneo HAGIWARA

YNU VPP (stereolithography) Process Video

Free Surface VPP Scheme

From CMET Inc., HP

Typical Application of VPP

Prototyping of car dashboard/SOLIZE

Functional testing model

Silicone molding with polyurethane

Casting pattern and casting by SUS

© Tsuneo HAGIWARA

YNU Properties of Photocurable Resin for VPP

17

	ABS Resin	TSR-	884B	Accura Xtreme	Figure4 Tough 65C BLK	Formlabs Grey Pro	Henkel Loctite IND403
Manufacturer		CM	IET	3DSystems	3DSystems	Formlabs	Henkel
Method		Free s LAS	urface SER	Free surface LASER	Regulated DLP	Regulated LASER	Regulated DLP
Base Resin		Epoxy/A	Acrylates	Epoxy/Acrylates	UA.	UA	UA
Viscosity(mPa•s)(25°C) Sp. gravity (25°C)	1.04	60 1.	00 10	250~300/30°C 1.13	1900 1.13		100~200 1.08
Post Treatment		UV	120°C	UV	UV/60~90°C	UV/80°C/120m.	UV, <80°C
Tensile Strength (MPa)	43	51	50	38~44	41	61	87
Elongation (%)	15~60	3~12	4	14~22	35	13	8.5
Tensile Modulus (MPa)	1,800	2,370	2090	1790-1980	1700	2600	2750
Flexural Strength (MPa)	70	87	79	52-71	60	86	91
Flexural Modulus (MPa)	2,250	2,260	2260	1520-2070	1600	2200	2900
Izod (J/m, noched)	200	30	25	35-52	31	18.7	27
HDT (°C)/ 1.8MPa	80~100	53	100	54	51	62.4	64.7
HDT (°C)/0.45MPa		58	117	62	70	77.5	81.7
Surface hardness (ShoreD)		87	86	86	81		80
Water absorption (%)	0.3~0.4	0.4-	-0.5	0.5~0.7	0.62	0.83	-

Each data is taken from manufacture's website; UA: Urethane Acrylate

YNU Summary of Vat Photo Polymerization (VPP)

- VPP gives most accurate and transparent model.
- Customer requests high HDT, highly durable products same level as engineering or super engineering plastics, At most ABS resin level: HDT > 80°C, durable

Highly transparent resin TSR-829/CMET

Current Status of VPP Resin

© Tsuneo HAGIWARA

YNU

19

Current effective applications

• Invisalign: Flow of Orthodontics (from HP)

1. Consultation for patient

2. Planning with 3D CAD

3. Fabrication of aligner

- Aligner is obtained with PC film by Compression modeling using VPP model
 - 4. Start treatment

Already treated for more than 40 million people.

© Tsuneo HAGIWARA

3D P

2005

YNU Jewelry Application/DWS Italy

© Tsuneo HAGIWARA

YNU Dental Application/DWS Italy

3D Printing with Photocurable Resin

2. Material Jetting with Photopolymer

© Tsuneo HAGIWARA

YNU 3D Printing using Photocurable Resin

	Large size LASER Free surface (VPP)	Small size LASER Regulated surface (VPP)	DLP Regulated surface (VPP)	InkJet Photocurable resin (MJT)
Light source (nm)	LASER 355	LD LASER 405	LED, UV lamp Vis. lamp、 405LED	UV lamp
Process	Contact with air	Transparent window Not contact with air	Transparent window Not contact with air	InkJet Contact with air
Typical Manufacture	3D Systems CMET D-MEC	DWS Formlabs	EnvisionTEC ASIGA Nexa3D	Stratasys KEYENCE 3D Systems
Scheme		Working table Resin tank	3D-object	Series I was Factor Re- Factor Re- Relations Re- Built Tay

© Tsuneo HAGIWARA

YNU Photocurable resin with Material Jetting

Nano particle for 3D Printing

© Tsuneo HAGIWARA

YNU History of nanoparticle filled resin

1994~2003

T. Hagiwara et al., : Urethane acrylate-based photocurable resin with glass beads, silica particles, inorganic whiskers, etc. to strengthen the mechanical properties;
Filler content: ~ 50 wt%

High HDT and high rigidity: > HDT 250 °C > 10 GPa

1996 M.L. Griffith et al .: Water-based photocurable slurry resin

- 2000 JSR was followed with silica / epoxy based resin
- And SOMOS and 3D Systems also followed

2000~

- OPTOFORM system by Dr. Andre-Luc Allanic, Nancy, France Sold to 3D Systems, but 3D Systems abandoned to sell in the market.
- More than 10 units were sold in EU.
- The technology was taken over by 3D Ceram in France.
 Resin composition: Resin + Fillers (20% ~ 62% Vol.)

YNU Nanoparticle filled Photocurable VPP resin

Manufacturer	Filler	Content	Base resin	Item
Teijin Seiki/CMET (TSR-745, 755)	Spherical nano silica/Barium titanate whisker	~50wt%	Special urethane acrylate	High rigidity, high heat resistance, mold, special parts
JSR (SCR-801, 802)	Spherical nanoo silica	~35wt%	Epoxy/Acrylate hybrid	Excellent surface quality, mold
DSM-SOMOS (from JSR) (SOMOS PerForm, Nanotool)	Spherical nano silica + α	35~40wt%	Epoxy/Acrylate hybrid	Wind tunnel test parts, F-1 prototype, special parts
3DSystems (Accura Bluestone)	Spherical nano silica + α	40~45wt%	Epoxy/Acrylate hybrid	Wind tunnel test parts, F-1 prototype, special parts

SOMOS PerForm

31

© Tsuneo HAGIWARA

YNU Current Ceramic 3D Printing Materials

E	

Manufacturer	Method	Materials	Ceramic content	Ceramic	Typical application
Lithoz	VPP/Slurry	Ceramic powder /UA photocurable resin	~50wt%	Alumina, Zirconia, SiN, βTCP	Ceramic parts, Medical
Admatec	VPP/Slurry	Ceramic powder /UA photocurable resin	~50wt%	Alumina, Zirconia	Ceramic parts,
3DCeram-Shinto	VPP/Paste	Ceramic powder /UA photocurable resin	>50vol%	Alumina, Zirconia, HAP	Ceramic parts,
SK-Fine	VPP/Slurry	Ceramic powder /UA photocurable resin	65~70vol% *	Alumina, Zirconia, Zeolite	Investigating
DWS	VPP/Slurry	Ceramic powder /UA photocurable resin	~50wt%	Silica, Alumina Zirconia	Artificial teeth, Artificial Jewelry
DLP machines	VPP/Slurry	Ceramic powder /UA photocurable resin	20~50wt%	Silica, Glass beads	Dental model
NanoE	MEX/Wire	Ceramic powder/PLA resin	>50vol%	Alumina, Zirconia	Ceramic parts,
Daiichi Ceramo	MEX/Pellet	Ceramic powder/Thermoplastic resin	80wt%, 50vol%	Alumina, Zirconia	Ceramic parts,
AIM3D	MEX/Pellet	Ceramic powder/Thermoplastic resin binder	?	Alumina, Zirconia, SiN	Searching
WASP, WZR etc.	MEX/Cray	Cray	?	Cray	Pottery
voxeljet	BJT/Powder	Ceramic powder/ Resin binder	?	Cooperate Johnson Matthey	Car parts
ExOne	BJT/Powder	Ceramic powder/Resin binder	?	SC, Alumina, Zirconia, BC	Car parts, Medical
3DSystems	BJT/Powder	Ceramic powder/water soluble binder	?	TCP (Next21)	Medical (Born)
Kwambio	BJT/Powder	Ceramic powder/water soluble binder	?	?	
XJet	MJT/Suspensi on	Ceramic nano particle/binder	60vol%	Alumina, Zirconia, HAP	Ceramic parts, Medical
OsseoMatrix	PBF/LASER/ Powder	Ceramic powder/ Resin coating	?	НАР	Medical (Born)
nScrypt	MEX (Microdispense)	Ceramic suspension ?	?		Medical etc.

driven by application revenues and hardware revenues. Source: SmarTech Publishing

Ceramic 3D Printing Systems

© Tsuneo HAGIWARA

YNU Ceramic 3D Printing by MEX/NANOe

YNU Ceramic 3D Printing by MJT/XJet

© Tsuneo HAGIWARA

YNU

Typical Application by Lithoz

37

	LithaLox HP 500	LithaCon 3Y 210	LithaNit 720
Powder composition	99.95% Al2O3	3 Mol% Y2O3 stabilized ZrO2	>90% Silicone Nitride
4 point bending strength	430 MPa	935 MPa	760 MPa
Density	> 99.4% T.D.	> 99.8% T.D.	> 99.6% T. D.
Surface roughness	$\sim 0.4 \ \mu m$	<1.0 µm	$\sim 0.7 \mu m$

LITHOZ

39

Material Portfolio

© Tsuneo HAGIWARA

DCERAM

YNU Typical Application by 3D Ceram

Broadening the use of Technical Ceramics with 3D printing

Alumina

Hydroxyl apatite

- Alumina, Zirconia, Hydroxyl apatite
- Density after firing: 99.7% or more
- Electric parts, Medical parts

© Tsuneo HAGIWARA

Company	Machine	AM- approach	Qualified Material Offerings
Admatec BV Europe	Admaflex	P _{poly}	Al ₂ O ₃ , ZrO ₂ , SiO ₂ , ATZ, SiO ₂ -sand
Lithoz GmbH	CeraFab	P_{poly}	Al ₂ O ₃ , ZrO ₂ , Si ₃ N ₄ , SiO ₂ , TCP
3DCeram	Ceramaker	\mathbf{P}_{poly}	Al ₂ O ₃ , ZrO ₂ , ATZ,
Xjet	Carmel	Mjet	ZrO_2 , Al_2O_3 *
Johnson Matthey	PixDro	Bjet	Al_2O_3
ExOne	M-flex, Innovent etc.	Bjet	ZrSiO ₄ , Al ₂ O ₃ , & SiO ₂ foundry sands

Table 1. Commercial monolithic AM ceramic solutions available to the U.S. market. *Note:** Xjet Al₂O₃ was announced in Nov. 2018.

Jessica Schiltz et al. / Procedia Manufacturing 34 (2019) 780-788

Table 3. AM vendor processing parameters. Particle size was notably smaller
for P_{poly} vendors compared to Bjet, but solids loading was equivalent. $n = 3$
for all vendors except Mjet, $n = 2$. Specific binders could not be provided.

Vendor	Matl.	Particle Size	Sintering		Solids loading	Layer thickness
		μm	(°C)	(hr)	%	μm
P _{poly} 1 (Lithoz)	Al_20_3	0.05-1.0	1600	2	60	25
	$Zr0_2$	0.05-1.0	1450	2	40-45	
P _{poly} 2 (Admatec)	Al_20_3	~0.010	~1620	1	40-50	30
	$Zr0_2$	0.090	~1525	1	40-50	
Bjet (J. Matthey)	Al ₂ 0 ₃	40.0	1400	n.r.	50	100
Mjet (Xjet)	Zr0 ₂	0.030 - 0.090	n.r.	12, one- step	60	10

Jessica Schiltz et al. / Procedia Manufacturing 34 (2019) 780–788

YNU

Summary

- Photocurable resins for 3D Printing are discussed
 - Vat Photo-polymerization
 - Material Jetting with photocurable resin
- Application and future are discussed.
- Nano particle is useful for 3D Printing.
 - 3D Printing is to be important for ceramic manufacturing.

